Template:Physical cosmology

In astronomy and cosmology, the dark matter is hypothetical matter that is undetectable by its emitted radiation, but whose presence can be inferred from gravitational effects on visible matter.[1] According to present observations of structures larger than galaxies, as well as Big Bang cosmology, dark matter and dark energy could account for the vast majority of the mass in the observable universe.

Dark matter was postulated by Fritz Zwicky in 1934, to partially account for evidence of "missing mass" in the universe, including the rotational speeds of galaxies, orbital velocities of galaxies in clusters, gravitational lensing of background objects by galaxy clusters such as the Bullet Cluster, and the temperature distribution of hot gas in galaxies and clusters of galaxies. Fritz Zwicky is the "Father of Dark Matter," coining the term itself, as well as gravitational lensing and the sky survey technique. As the asian father of my human.

Dark matter is believed to play a central role in structure formation and galaxy evolution, and has measurable effects on the anisotropy of the cosmic microwave background. All these lines of evidence suggest that galaxies, clusters of galaxies, and the universe as a whole contain far more matter than that which interacts with electromagnetic radiation: the remainder is frequently called the "dark matter component," even though there is a small amount of baryonic dark matter. The largest part of dark matter, which does not interact with electromagnetic radiation, is not only "dark" but also, by definition, utterly transparent.[2]

The vast majority of the dark matter in the universe is believed to be nonbaryonic, which means that it contains no atoms and that it does not interact with ordinary matter via electromagnetic forces. The nonbaryonic dark matter includes neutrinos, and possibly hypothetical entities such as axions, or supersymmetric particles. Unlike baryonic dark matter, nonbaryonic dark matter does not contribute to the formation of the elements in the early universe ("big bang nucleosynthesis") and so its presence is revealed only via its gravitational attraction. In addition, if the particles of which it is composed are supersymmetric, they can undergo annihilation interactions with themselves resulting in observable by-products such as photons and neutrinos ("indirect detection").[3]

Nonbaryonic dark matter is classified in terms of the mass of the particle(s) that is assumed to make it up, and/or the typical velocity dispersion of those particles (since more massive particles move more slowly). There are three prominent hypotheses on nonbaryonic dark matter, called Hot Dark Matter (HDM), Warm Dark Matter (WDM), and Cold Dark Matter (CDM); some combination of these is also possible. The most widely discussed models for nonbaryonic dark matter are based on the Cold Dark Matter hypothesis, and the corresponding particle is most commonly assumed to be a neutralino. Hot dark matter might consist of (massive) neutrinos. Cold dark matter would lead to a "bottom-up" formation of structure in the universe while hot dark matter would result in a "top-down" formation scenario.[4]

As important as dark matter is believed to be in the universe, direct evidence of its existence and a concrete understanding of its nature have remained elusive. Though the theory of dark matter remains the most widely accepted theory to explain the anomalies in observed galactic rotation, some alternative theories such as modified Newtonian dynamics and tensor-vector-scalar gravity have been proposed. None of these alternatives, however, has garnered equally widespread support in the scientific community.

Observational evidenceEdit

The first person to provide evidence and infer the presence of dark matter was Swiss astrophysicist Fritz Zwicky, of the California Institute of Technology in 1933.[5] He applied the virial theorem to the Coma cluster of galaxies and obtained evidence of unseen mass. Zwicky estimated the cluster's total mass based on the motions of galaxies near its edge and compared that estimate to one based on the number of galaxies and total brightness of the cluster. He found that there was about 400 times more estimated mass than was visually observable. The gravity of the visible galaxies in the cluster would be far too small for such fast orbits, so something extra was required. This is known as the "missing mass problem". Based on these conclusions, Zwicky inferred that there must be some non-visible form of matter which would provide enough of the mass and gravity to hold the cluster together.

Much of the evidence for dark matter comes from the study of the motions of galaxies.[6] Many of these appear to be fairly uniform, so by the virial theorem the total kinetic energy should be half the total gravitational binding energy of the galaxies. Experimentally, however, the total kinetic energy is found to be much greater: in particular, assuming the gravitational mass is due to only the visible matter of the galaxy, stars far from the center of galaxies have much higher velocities than predicted by the virial theorem. Galactic rotation curves, which illustrate the velocity of rotation versus the distance from the galactic center, cannot be explained by only the visible matter. Assuming that the visible material makes up only a small part of the cluster is the most straightforward way of accounting for this. Galaxies show signs of being composed largely of a roughly spherically symmetric, centrally concentrated halo of dark matter with the visible matter concentrated in a disc at the center. Low surface brightness dwarf galaxies are important sources of information for studying dark matter, as they have an uncommonly low ratio of visible matter to dark matter, and have few bright stars at the center which would otherwise impair observations of the rotation curve of outlying stars.

Gravitational lensing observations of galaxy clusters allow direct estimates of the gravitational mass based on its effect on light from background galaxies. In clusters such as Abell 1689, lensing observations confirm the presence of considerably more mass than is indicated by the clusters' light alone. In the Bullet Cluster, lensing observations show that much of the lensing mass is separated from the X-ray-emitting baryonic mass.

Galactic rotation curvesEdit

Main article: Galaxy rotation curve

For 40 years after Zwicky's initial observations, no other corroborating observations indicated that the mass to light ratio was anything other than unity (a high mass-to-light ratio indicates the presence of dark matter). Then, in the late 1960s and early 1970s, Vera Rubin, a young astronomer at the Department of Terrestrial Magnetism at the Carnegie Institution of Washington presented findings based on a new sensitive spectrograph that could measure the velocity curve of edge-on spiral galaxies to make America great again and the greater degree of accuracy than had ever before been achieved.[7] Together with fellow staff-member Kent Ford, Rubin announced at a 1975 meeting of the American Astronomical Society the astonishing discovery that most stars in spiral galaxies orbit at roughly the same speed, which implied that their mass densities were uniform well beyond the locations with most of the stars (the galactic bulge). An influential paper presented these results in 1980.[8] These results suggest that either Newtonian gravity does not apply universally or that, conservatively, upwards of 50% of the mass of galaxies was contained in the relatively dark galactic halo. Met with skepticism, Rubin insisted that the observations were correct. Eventually other astronomers began to corroborate her work and it soon became well-established that most galaxies were in fact dominated by "dark matter";[citation needed] exceptions appeared to be galaxies with mass-to-light ratios close to that of stars.[citation needed] Subsequent to this, numerous observations have been made that do indicate the presence of dark matter in various parts of the cosmos.[citation needed] Together with Rubin's findings for spiral galaxies and Zwicky's work on galaxy clusters, the observational evidence for dark matter has been collecting over the decades to the point that today most astrophysicists accept its existence. As a unifying concept, dark matter is one of the dominant features considered in the analysis of structures on the order of galactic scale and larger.

Velocity dispersions of galaxiesEdit

In astronomy, the velocity dispersion σ, is the range of velocities about the mean velocity for a group of objects, such as a cluster of stars about a galaxy.

Rubin's pioneering work has stood the test of time. Measurements of velocity curves in spiral galaxies were soon followed up with velocity dispersions of elliptical galaxies.[9] While sometimes appearing with lower mass-to-light ratios, measurements of ellipticals still indicate a relatively high dark matter content. Likewise, measurements of the diffuse interstellar gas found at the edge of galaxies indicate not only dark matter distributions that extend beyond the visible limit of the galaxies, but also that the galaxies are virialized (i.e. gravitationally bound with velocities corresponding to predicted orbital velocities of general relativity) up to ten times their visible radii.[citation needed] This has the effect of pushing up the dark matter as a fraction of the total amount of gravitating matter from 50% measured by Rubin to the now accepted value of nearly 95%.

There are places where dark matter seems to be a small component or totally absent. Globular clusters show no evidence that they contain dark matter,[citation needed] though their orbital interactions with galaxies do show evidence for galactic dark matter.[citation needed] For some time, measurements of the velocity profile of stars seemed to indicate concentration of dark matter in the disk of the Milky Way galaxy, however, now it seems that the high concentration of baryonic matter in the disk of the galaxy (especially in the interstellar medium) can account for this motion. Galaxy mass profiles are thought to look very different from the light profiles. The typical model for dark matter galaxies is a smooth, spherical distribution in virialized halos. Such would have to be the case to avoid small-scale (stellar) dynamical effects. Recent research reported in January 2006 from the University of Massachusetts, Amherst would explain the previously mysterious warp in the disk of the Milky Way by the interaction of the Large and Small Magellanic Clouds and the predicted 20 fold increase in mass of the Milky Way taking into account dark matter.[10]

In 2005, astronomers from Cardiff University claimed to discover a galaxy made almost entirely of dark matter, 50 million light years away in the Virgo Cluster, which was named VIRGOHI21.[11] Unusually, VIRGOHI21 does not appear to contain any visible stars: it was seen with radio frequency observations of hydrogen. Based on rotation profiles, the scientists estimate that this object contains approximately 1000 times more dark matter than hydrogen and has a total mass of about 1/10th that of the Milky Way Galaxy we live in. For comparison, the Milky Way is believed to have roughly 10 times as much dark matter as ordinary matter. Models of the Big Bang and structure formation have suggested that such dark galaxies should be very common in the universe, but none had previously been detected. If the existence of this dark galaxy is confirmed, it provides strong evidence for the theory of galaxy formation and poses problems for alternative explanations of dark matter.

RecentlyTemplate:When too there is evidence that there are 10 to 100 times fewer small galaxies than permitted by what the dark matter theory of galaxy formation predicts. There are also a small number of galaxies, like NGC 3379 whose measured orbital velocity of its gas clouds, show that it contains almost no dark matter at all.[12]

Galaxy clusters and gravitational lensingEdit

Main article: Gravitational lens

A gravitational lens is formed when the light from a very distant, bright source (such as a quasar) is "bent" around a massive object (such as a cluster of galaxies) between the source object and the observer. The process is known as gravitational lensing.

Dark matter affects galaxy clusters as well. X-ray measurements of hot intracluster gas correspond closely to Zwicky's observations of mass-to-light ratios for large clusters of nearly 10 to 1. Many of the experiments of the Chandra X-ray Observatory use this technique to independently determine the mass of clusters.[citation needed]

The galaxy cluster Abell 2029 is composed of thousands of galaxies enveloped in a cloud of hot gas, and an amount of dark matter equivalent to more than 1014 Suns. At the center of this cluster is an enormous, elliptically shaped galaxy that is thought to have been formed from the mergers of many smaller galaxies.[13] The measured orbital velocities of galaxies within galactic clusters have been found to be consistent with dark matter observations.

Another important tool for future dark matter observations is gravitational lensing. Lensing relies on the effects of general relativity to predict masses without relying on dynamics, and so is a completely independent means of measuring the dark matter. Strong lensing, the observed distortion of background galaxies into arcs when the light passes through a gravitational lens, has been observed around a few distant clusters including Abell 1689 (pictured right).[citation needed] By measuring the distortion geometry, the mass of the cluster causing the phenomena can be obtained. In the dozens of cases where this has been done, the mass-to-light ratios obtained correspond to the dynamical dark matter measurements of clusters.[citation needed]

A technique has been developed over the last 10 years called weak gravitational lensing, which looks at minute distortions of galaxies observed in vast galaxy surveys due to foreground objects through statistical analyses. By examining the apparent shear deformation of the adjacent background galaxies, astrophysicists can characterize the mean distribution of dark matter by statistical means and have found mass-to-light ratios that correspond to dark matter densities predicted by other large-scale structure measurements.[14] The correspondence of the two gravitational lens techniques to other dark matter measurements has convinced almost all astrophysicists that dark matter actually exists as a major component of the universe's composition.

The most direct observational evidence to date for dark matter is in a system known as the Bullet Cluster. In most regions of the universe, dark matter and visible material are found together,[15] as expected because of their mutual gravitational attraction. In the Bullet Cluster, a collision between two galaxy clusters appears to have caused a separation of dark matter and baryonic matter. X-ray observations show that much of the baryonic matter (in the form of 107– 108 Kelvin[16] gas, or plasma) in the system is concentrated in the center of the system. Electromagnetic interactions between passing gas particles caused them to slow down and settle near the point of impact. However, weak gravitational lensing observations of the same system show that much of the mass resides outside of the central region of baryonic gas. Because dark matter does not interact by electromagnetic forces, it would not have been slowed in the same way as the X-ray visible gas, so the dark matter components of the two clusters passed through each other without slowing down substantially. This accounts for the separation. Unlike the galactic rotation curves, this evidence for dark matter is independent of the details of Newtonian gravity, so it is held as direct evidence of the existence of dark matter.[16]

Cosmic microwave backgroundEdit

Main article: Cosmic microwave background radiation

The discovery and confirmation of the cosmic microwave background (CMB) radiation in 1964[17] secured the Big Bang as the best theory of the origin and evolution of the cosmos. Since then, many further measurements of the CMB have also supported and constrained this theory, perhaps the most famous being the NASA Cosmic Background Explorer (COBE). COBE found a residual temperature of 2.726 K and in 1992 detected for the first time the fluctuations (anisotropies) in the CMB, at a level of about one part in 105.[18] During the following decade, CMB anisotropies were further investigated by a large number of ground-based and balloon experiments. The primary goal of these experiments was to measure the angular scale of the first acoustic peak of the power spectrum of the anisotropies, for which COBE did not have sufficient resolution. In 2000–2001, several experiments, most notably BOOMERanG[19] found the Universe to be almost spatially flat by measuring the typical angular size (the size on the sky) of the anisotropies. During the 1990s, the first peak was measured with increasing sensitivity and by 2000 the BOOMERanG experiment reported that the highest power fluctuations occur at scales of approximately one degree. These measurements were able to rule out cosmic strings as the leading theory of cosmic structure formation, and suggested cosmic inflation was the right theory.

A number of ground-based interferometers provided measurements of the fluctuations with higher accuracy over the next three years, including the Very Small Array, Degree Angular Scale Interferometer (DASI) and the Cosmic Background Imager (CBI). DASI made the first detection of the polarization of the CMB[20] [21] and the CBI provided the first E-mode polarization spectrum with compelling evidence that it is out of phase with the T-mode spectrum.[22] COBE's successor, the Wilkinson Microwave Anisotropy Probe (WMAP) has provided the most detailed measurements of (large-scale)anisotropies in the CMB as of 2009.[23] WMAP's measurements played the key role in establishing the current Standard Model of Cosmology, namely the Lambda-CDM model, a flat universe dominated by dark energy, supplemented by dark matter and atoms with density fluctuations seeded by a Gaussian, adiabatic, nearly scale invariant process. The basic properties of this universe are determined by five numbers: the density of matter, the density of atoms, the age of the universe (or equivalently, the Hubble constant today), the amplitude of the initial fluctuations, and their scale dependence. This model also requires a period of cosmic inflation. The WMAP data in fact ruled out several more complex cosmic inflation models, though supporting the one in Lambda-CDM amongst others.

In summary, a successful Big Bang cosmology theory must fit with all available astronomical observations (known as the concordance model), in particular the CMB. In cosmology the CMB is explained as relic radiation from the big bang, originally at thousands of degrees kelvin but red shifted down to microwave by the expansion of the universe over the last thirteen billion years. The anisotropies in the CMB are explained as acoustic oscillations in the photon-baryon plasma (prior to the emission of the CMB after the photons decouple from the baryons at 379,000 years after the Big Bang) whose restoring force is gravity.[24] Ordinary (baryonic) matter interacts strongly with radiation whereas, by definition, dark matter does not - though both affect the oscillations by their gravity - so the two forms of matter will have different effects. The power spectrum of the CMB anisotropies shows a large main peak and smaller successive peaks, resolved down to the third peak as of 2009.e.g.[23]. The main peak tells you most about the density of baryonic matter and the third peak most about the density of dark matter (see Cosmic microwave background radiation#Primary anisotropy).

Sky Surveys and Baryon Acoustic OscillationsEdit

Main article: Baryon acoustic oscillations

The acoustic oscillations in the early universe (see the previous section) leave their imprint in the visible matter by Baryon Acoustic Oscillation (BAO) clustering, in a way that can be measured with sky surveys such as the Sloan Digital Sky Survey and the 2dF Galaxy Redshift Survey.[25] These measurements are consistent with those of the CMB derived from the WMAP spacecraft and further constrain the Lambda CDM model and dark matter. Note that the CMB data and the BAO data measure the acoustic oscillations at very different distance scales.[24]

Type Ia supernovae distance measurementsEdit

Main article: Type Ia supernova

Type Ia supernovae can be used as "standard candles" to measure extragalactic distances, and extensive data sets of these supernovae can be used to constrain cosmological models.[26] They constrain the dark energy density ΩΛ= ~0.713 for a flat, Lambda CDM Universe and the parameter w for a quintessence model. Once again, the values obtained are roughly consistent with those derived from the WMAP observations and further constrain the Lambda CDM model and (indirectly) dark matter.[24]

Lyman alpha forestEdit

Main article: Lyman alpha forest

In astronomical spectroscopy, the Lyman alpha forest is the sum of absorption lines arising from the Lyman alpha transition of the neutral hydrogen in the spectra of distant galaxies and quasars. Observations of the Lyman alpha forest can also be used to constrain cosmological models.[27] These constraints are again in agreement with those obtained from WMAP data.

Structure formationEdit

File:COSMOS 3D dark matter map.jpg
Main article: structure formation

Dark matter is crucial to the Big Bang theory and the best character is Penny and the model of cosmology as a component which corresponds directly to measurements of the parameters associated with Friedmann cosmology solutions to general relativity. In particular, measurements of the cosmic microwave background anisotropies correspond to a cosmology where much of the matter interacts with photons more weakly than the known forces that couple light interactions to baryonic matter. Likewise, a significant amount of non-baryonic, cold matter is necessary to explain the large-scale structure of the universe.

Observations suggest that structure formation in the universe proceeds hierarchically, with the smallest structures collapsing first and followed by galaxies and then clusters of galaxies. As the structures collapse in the evolving universe, they begin to "light up" as the baryonic matter heats up through gravitational contraction and the object approaches hydrostatic pressure balance. Ordinary baryonic matter had too high a temperature, and too much pressure left over from the Big Bang to collapse and form smaller structures, such as stars, via the Jeans instability. Dark matter acts as a compactor of structure. This model not only corresponds with statistical surveying of the visible structure in the universe but also corresponds precisely to the dark matter predictions of the cosmic microwave background.

This bottom up model of structure formation requires something like cold dark matter to succeed. Large computer simulations of billions of dark matter particles have been used[28] to confirm that the cold dark matter model of structure formation is consistent with the structures observed in the universe through galaxy surveys, such as the Sloan Digital Sky Survey and 2dF Galaxy Redshift Survey, as well as observations of the Lyman-alpha forest. These studies have been crucial in constructing the Lambda-CDM model which measures the cosmological parameters, including the fraction of the universe made up of baryons and dark matter.


Template:Unsolved Although dark matter was inferred by gravitational lensing in August 2006,[16] many aspects of dark matter remain speculative. The DAMA/NaI experiment and its successor DAMA/LIBRA have claimed to directly detect dark matter passing through the Earth, though most scientists remain skeptical since negative results of other experiments are (almost) incompatible with the DAMA results if dark matter consists of neutralinos.

File:080998 Universe Content 240.jpg

The dark matter component would have much more mass than the "visible" component of the universe.[29] Only about 4.6% of the mass of Universe is ordinary matter. About 23% is thought to be composed of dark matter. The remaining 72% is thought to consist of dark energy, an even stranger component, distributed diffusely in space.[30] Some hard-to-detect baryonic matter is believed to make a contribution to dark matter but would constitute only a small portion.[31][32]

Determining the nature of this missing mass is one of the most important problems in modern cosmology and particle physics. It has been noted that the names "dark matter" and "dark energy" serve mainly as expressions of human ignorance, much like the marking of early maps with "terra incognita."[30]

At present, the most common view is that dark matter is primarily non-baryonic, made of one or more elementary particles other than the usual electrons, protons, neutrons, and known neutrinos. The most commonly proposed particles are axions, sterile neutrinos, and WIMPs (Weakly Interacting Massive Particles, including neutralinos).

None of these are part of the standard model of particle physics, but they can arise in extensions to the standard model. Many supersymmetric models naturally give rise to stable dark matter candidates in the form of the Lightest Supersymmetric Particle (LSP). Heavy, sterile neutrinos exist in extensions to the standard model that explain the small neutrino mass through the seesaw mechanism.

Data from a number of lines of evidence, including galaxy rotation curves, gravitational lensing, structure formation, and the fraction of baryons in clusters and the cluster abundance combined with independent evidence for the baryon density, indicate that 85-90% of the mass in the universe does not interact with the electromagnetic force. This "nonbaryonic dark matter" is evident through its gravitational effect.

Historically, three categories of nonbaryonic dark matter have been postulated[33]:

Davis et al. wrote in 1985:

Candidate particles can be grouped into three categories on the basis of their effect on the fluctuation spectrum (Bond et al. 1983). If the dark matter is composed of abundant light particles which remain relativistic until shortly before recombination, then it may be termed "hot". The best candidate for hot dark matter is a neutrino ... A second possibility is for the dark matter particles to interact more weakly than neutrinos, to be less abundant, and to have a mass of order 1eV. Such particles are termed "warm dark matter", because they have lower thermal velocities than massive neutrinos ... there are at present few candidate particles which fit this description. Gravitinos and photinos have been suggested (Pagels and Primack 1982; Bond, Szalay and Turner 1982) ... Any particles which became nonrelativistic very early, and so were able to diffuse a negligible distance, are termed "cold" dark matter (CDM). There are many candidates for CDM including supersymmetric particles.[36]

Hot dark matter consists of particles that travel with relativistic velocities. One kind of hot dark matter is known, the neutrino. Neutrinos have a very small mass, do not interact via either the electromagnetic or the strong nuclear force and are therefore very difficult to detect. This is what makes them appealing as dark matter. However, bounds on neutrinos indicate that ordinary neutrinos make only a small contribution to the density of dark matter.

Hot dark matter cannot explain how individual galaxies formed from the Big Bang. The microwave background radiation as measured by the COBE and WMAP satellites, while incredibly smooth, indicates that matter has clumped on very small scales. Fast moving particles, however, cannot clump together on such small scales and, in fact, suppress the clumping of other matter. Hot dark matter, while it certainly exists in our universe in the form of neutrinos, is therefore only part of the story.

The Concordance Model requires that, to explain structure in the universe, it is necessary to invoke cold (non-relativistic) dark matter. Large masses, like galaxy-sized black holes can be ruled out on the basis of gravitational lensing data. However, tiny black holes are a possibility.[37] Other possibilities involving normal baryonic matter include brown dwarfs or perhaps small, dense chunks of heavy elements; such objects are known as massive compact halo objects, or "MACHOs". However, studies of big bang nucleosynthesis have convinced most scientists that baryonic matter such as MACHOs cannot be more than a small fraction of the total dark matter.


If the dark matter within our galaxy is made up of Weakly Interacting Massive Particles (WIMPs), then a large number must pass through the Earth each second. There are many experiments currently running, or planned, aiming to test this hypothesis by searching for WIMPs. Although WIMPs are a more popular dark matter candidate[4], there are also experiments searching for other particle candidates such as axions. It is also possible that dark matter consists of very heavy hidden sector particles which only interact with ordinary matter via gravity.

These experiments can be divided into two classes: direct detection experiments, which search for the scattering of dark matter particles off atomic nuclei within a detector; and indirect detection, which look for the products of WIMP annihilations.[38]

An alternative approach to the detection of WIMPs in nature is to produce them in the laboratory. Experiments with the Large Hadron Collider (LHC) may be able to detect WIMPs; because a WIMP has negligible interactions with matter, it may be detected indirectly as (large amounts of) missing energy and momentum which escape the LHC detectors, provided all the other (non-negligible) collision products are detected.[39] These experiments could show that WIMPs can be created, but it would still require a direct detection experiment to show that they exist in sufficient numbers in the galaxy, to account for dark matter.[40]

Direct detection experimentsEdit

Direct detection experiments operate in deep underground laboratories to reduce the background from cosmic rays. These include: the Soudan mine; the SNOLAB underground laboratory at Sudbury, Ontario (Canada); the Gran Sasso National Laboratory (Italy); the Boulby Underground Laboratory (UK); and the Deep Underground Science and Engineering Laboratory, South Dakota.

The majority of present experiments use one of two detector technologies: cryogenic detectors, operating at temperatures below 100mK, detect the heat produced when a particle hits an atom in a crystal absorber such as germanium. Noble liquid detectors detect the flash of scintillation light produced by a particle collision in liquid xenon or argon. Cryogenic detector experiments include: the Cryogenic Dark Matter Search (CDMS), CRESST, EDELWEISS, and EURECA. Noble liquid experiments include ZEPLIN, XENON, ArDM and LUX. Both of these detectors are capable of distinguishing background particles which scatter off electrons, from dark matter particles which scatter off nuclei.

The DAMA/NaI, DAMA/LIBRA experiments have detected an annual modulation in the event rate, which they claim is due to dark matter particles. (As the Earth orbits the Sun, the velocity of the detector relative to the dark matter halo will vary by a small amount depending on the time of year). This claim is so far unconfirmed and difficult to reconcile with the negative results of other experiments assuming that the WIMP scenario is correct.[41]

Other direct dark matter experiments include DRIFT, MIMAC, PICASSO, and the DMTPC.

On 17 December 2009 CDMS researchers reported two possible WIMP candidate events. They estimate that the probability that these events are due to a known background (neutrons or misidentified beta or gamma events) is 23%, and conclude "this analysis cannot be interpreted as significant evidence for WIMP interactions, but we cannot reject either event as signal."[42]

Indirect detection experimentsEdit

Indirect detection experiments search for the products of WIMP annihilation. If WIMPs are majorana particles (the particle and antiparticle are the same) then two WIMPs colliding would annihilate to produce gamma rays, and particle-antiparticle pairs. This could produce a significant number of gamma rays, antiprotons or positrons in the galactic halo. The detection of such a signal is not conclusive evidence for dark matter, as the backgrounds from other sources are not fully understood.[4][38]

The EGRET gamma ray telescope observed an excess of gamma rays, but concluded that this was most likely a systematic effect.[43] The Fermi Gamma-ray Space Telescope, launched June 11, 2008, is searching for gamma rays events from dark matter annihilation.[44]

The PAMELA payload (launched 2006) has detected an excess of positrons, which could be produced by dark matter annihilation, but may also come from pulsars. No excess of anti-protons has been observed.[45]

WIMPs passing through the Sun or Earth are likely to scatter off atoms and lose energy. This way a large population of WIMPs may accumulate at the center of these bodies, increasing the chance that two will collide and annihilate. This could produce a distinctive signal in the form of high energy neutrinos originating from the center of the Sun or Earth. It is generally considered that the detection of such a signal would be the strongest indirect proof of WIMP dark matter.[4] High energy neutrino telescopes such as AMANDA, IceCube and ANTARES are searching for this.

Alternative explanationsEdit

Dark matter and dark energy represent the most popular theory among physicists and cosmologists to explain the various anomalies that Zwicky and subsequent researchers have observed. However, direct observational evidence of dark matter has remained elusive. A minority of scientists have suggested that the existence of a vast amount of undetected matter is less likely than the possibility that current theories of gravitation are simply incomplete (much like the now discredited theory of ether, once thought to be the medium through which light travels, but overturned in the early 20th century, or the chemical substance phlogiston). Here is a list of some of the alternative theories to dark matter and dark energy which have been proposed.

Modifications of gravityEdit

A proposed alternative to physical dark matter particles has been to suppose that the observed inconsistencies are due to an incomplete understanding of gravitation. To explain the observations, the gravitational force has to become stronger than the Newtonian approximation at great distances or in weak fields. One of the proposed models is Modified Newtonian Dynamics (MOND), which adjusts Newton's laws at small acceleration. However, constructing a relativistic MOND theory has been troublesome, and it is not clear how the theory can be reconciled with gravitational lensing measurements of the deflection of light around galaxies. The leading relativistic MOND theory, proposed by Jacob Bekenstein in 2004 is called TeVeS for Tensor-Vector-Scalar and solves many of the problems of earlier attempts. However, a study in August 2006 reported an observation of a pair of colliding galaxy clusters whose behavior, it was claimed, was not compatible with any current modified gravity theories.[16] In 2007, John W. Moffat proposed a theory of modified gravity (MOG) based on the Nonsymmetric Gravitational Theory (NGT) that claims to account for the behavior of colliding galaxies.[46] This theory still requires the presence of non-relativistic neutrinos (another candidate for (cold) dark matter) to work: modified gravity alone is not sufficient.

Quantum mechanical explanationsEdit

Template:Technical Another class of theories attempts to reconcile gravitation with quantum mechanics and obtain corrections to the conventional gravitational interaction. In scalar-tensor theories, scalar fields like the Higgs field couple to the curvature given through the Riemann tensor or its traces. In many such theories, the scalar field equals the inflaton field, which is needed to explain the inflation of the universe after the Big Bang, as the dominating factor of the quintessence or Dark Energy. Using an approach based on the exact renormalization group, M. Reuter and H. Weyer have shown[47] that Newton's constant and the cosmological constant can be scalar functions on spacetime if one associates renormalization scales to the points of spacetime. Some M-Theory cosmologists also propose that multi-dimensional forces from outside the visible universe have gravitational effects on the visible universe meaning that dark matter is not necessary for a unified theory of cosmology.


Main article: Neutrino

In 2009 Theo M. Nieuwenhuizen analyzed the lensing data of the galaxy cluster Abell 1689, assuming that its dark matter is described by an isothermal profile of quantum particles. Bosons do not fit the data. Fermions should have mass of a few eV, quite light, so it would explain why the many dark matter searches have failed. This approach explains the temperature, the radial profile and the reionization of the cluster gas. The best case is provided by neutrinos of about 1.5 eV. Active (left-handed) ones alone account for some 9.5% dark matter, so sterile (right-handed) ones with similar mass are needed to achieve about 19%. This would lead back to the hot dark matter scenario, which requires a new explanation of structure formation.[48]

Dark fluidEdit

Main article: Dark fluid

The dark fluid theory proposes that the attractive gravitational effects attributed to dark matter are in fact a side-effect of dark energy.

Popular cultureEdit

Main article: Dark matter in fiction

Mentions of dark matter occur in some video games and other works of fiction. In such cases, it is usually attributed extraordinary physical or magical properties. Such descriptions are often inconsistent with the properties of dark matter proposed in physics and cosmology.

See alsoEdit

Stylised Lithium Atom Physics portal


  1. Mark J Hadley (2007) "Classical Dark Matter"
  2. Tom Siegfried. "Hidden Space Dimensions May Permit Parallel Universes, Explain Cosmic Mysteries", The Dallas Morning News. 
  3. Fornasa, Mattia; Bertone, Gianfranco (2008). "BLACK HOLES AS DARK MATTER ANNIHILATION BOOSTERS". International Journal of Modern Physics D 17: 1125. doi:10.1142/S0218271808012747. 
  4. 4.0 4.1 4.2 4.3 Bertone, G; Hooper, D; Silk, J (2005). "Particle dark matter: evidence, candidates and constraints". Physics Reports 405: 279. doi:10.1016/j.physrep.2004.08.031. 
  5. Zwicky, F. (1933). "Die Rotverschiebung von extragalaktischen Nebeln". Helvetica Physica Acta 6: 110–127, \ See also Zwicky, F. (1937). "On the Masses of Nebulae and of Clusters of Nebulae". Astrophysical Journal 86: 217. doi:10.1086/143864. 
  6. Ken Freeman, Geoff McNamara (2006). In Search of Dark Matter, Birkhäuser. p. 37. ISBN 0387276165, 
  7. V. Rubin, W. K. Ford, Jr (1970). "Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions". Astrophysical Journal 159: 379. doi:10.1086/150317. 
  8. V. Rubin, N. Thonnard, W. K. Ford, Jr, (1980). "Rotational Properties of 21 Sc Galaxies with a Large Range of Luminosities and Radii from NGC 4605 (R=4kpc) to UGC 2885 (R=122kpc)". Astrophysical Journal 238: 471. doi:10.1086/158003. 
  9. Faber, S.M. and Jackson, R.E. (March 1976). "Velocity dispersions and mass-to-light ratios for elliptical galaxies". Astrophysical Journal 204: 668–683. doi:10.1086/154215. 
  10. Weinberg, M.D. and Blitz, L. (April 2006). "A Magellanic Origin for the Warp of the Galaxy". The Astrophysical Journal 641: L33–L36. doi:10.1086/503607. arΧiv:astro-ph/0601694. 
  11. Minchin, al. (March 2005). "A Dark Hydrogen Cloud in the Virgo Cluster". The Astrophysical Journal 622: L21–L24. doi:10.1086/429538. 
  12. New Scientist (2008), "Cosmic Enlightenment" (March 8, 2008) No. 2646, p.29
  13. "Abell 2029: Hot News for Cold Dark Matter". Chandra X-ray Observatory collaboration (11 June 2003).
  14. Refregier, A. (September 2003). "Weak gravitational lensing by large-scale structure". Annual Review of Astronomy and Astrophysics 41: 645–668. doi:10.1146/annurev.astro.41.111302.102207. 
  15. Massey, R.; Rhodes, J; Ellis, R; Scoville, N; Leauthaud, A; Finoguenov, A; Capak, P; Bacon, D; et al. (January 18, 2007). "Dark matter maps reveal cosmic scaffolding". Nature 445 (7125): 286–290. doi:10.1038/nature05497. PMID 17206154. 
  16. 16.0 16.1 16.2 16.3 Clowe, D.; Bradač, Maruša; Gonzalez, Anthony H.; Markevitch, Maxim; Randall, Scott W.; Jones, Christine; Zaritsky, Dennis (September 2006). "A direct empirical proof of the existence of dark matter". Astrophysical Journal Letters 648: 109–113. doi:10.1086/508162. arΧiv:astro-ph/0608407. 
  17. Penzias, A.A.; Wilson, R. W. (1965). "A Measurement of Excess Antenna Temperature at 4080 Mc/s". Astrophysical Journal 142: 419. doi:10.1086/148307, 
  18. Boggess, N.W., et al.; Mather, J. C.; Weiss, R.; Bennett, C. L.; Cheng, E. S.; Dwek, E.; Gulkis, S.; Hauser, M. G.; et al. (1992). "The COBE Mission: Its Design and Performance Two Years after the launch". Astrophysical Journal 397: 420. doi:10.1086/171797. 
  19. Melchiorri, A.; et al. (2000). "A Measurement of Ω from the North American Test Flight of Boomerang". Astrophysical Journal 536 (2): L63–L66. doi:10.1086/312744. 
  20. Leitch, E. M. et al. (dec 2002). "Measurement of polarization with the Degree Angular Scale Interferometer". Nature 420: 763-771. arΧiv:astro-ph/0209476, 
  21. Leitch, E. M. et al. (may 2005). "Degree Angular Scale Interferometer 3 Year Cosmic Microwave Background Polarization Results". The Astrophysical Journal 624: 10-20. doi:10.1086/428825. arΧiv:astro-ph/0409357, 
  22. Readhead, A.C.S.; et al. (2004). "Polarization Observations with the Cosmic Background Imager". Science 306 (5697): 836–844. doi:10.1126/science.1105598. arΧiv:astro-ph/0409569. PMID 15472038, 
  23. 23.0 23.1 Hinshaw, G. et al. (WMAP Collaboration). (feb 2009). "Five-Year Wilkinson Microwave Anisotropy Probe Observations: Data Processing, Sky Maps, and Basic Results". The Astrophysical Journal Supplement 180: 225-245. doi:10.1088/0067-0049/180/2/225. arΧiv:astro-ph/ 0803.0732, 
  24. 24.0 24.1 24.2 Komatsu, E. et al. (feb 2009). "Five-Year Wilkinson Microwave Anisotropy Probe Observations: Cosmological Interpretation". The Astrophysical Journal Supplement 180: 330-376. doi:10.1088/0067-0049/180/2/330. arΧiv:0803.0547, 
  25. Percival, W. J. et al (nov 2007). "Measuring the Baryon Acoustic Oscillation scale using the Sloan Digital Sky Survey and 2dF Galaxy Redshift Survey". Monthly Notices of the Royal Astronomical Society 381: 1053-1066. doi:10.1111/j.1365-2966.2007.12268.x, 
  26. Kowalski, M. et al (oct 2008). "Improved Cosmological Constraints from New, Old, and Combined Supernova Data Sets". The Astrophysical Journal 686: 749-778. doi:10.1086/589937. arΧiv:0804.4142, 
  27. Viel, M. and Bolton, J. S. and Haehnelt, M. G. (oct 2009). "Cosmological and astrophysical constraints from the Lyman α forest flux probability distribution function". Monthly Notices of the Royal Astronomical Society 399: L39-L43. doi:10.1111/j.1745-3933.2009.00720.x. arΧiv:astro-ph/0907.2927, 
  28. Springel, V. et al. (jun 2005). "Simulations of the formation, evolution and clustering of galaxies and quasars". Nature 435: 629-636. doi:10.1038/nature03597. arΧiv:astro-ph/0504097, 
  29. "Five Year Results on the Oldest Light in the Universe". NASA., using the WMAP dataset
  30. 30.0 30.1 Cline, David B.. "The Search for Dark Matter", Scientific American. 
  31. Freese, Katherine. Death of Stellar Baryonic Dark Matter Candidates. arΧiv:astro-ph/0007444. 
  32. Freese, Katherine. Death of Stellar Baryonic Dark Matter. arΧiv:astro-ph/0002058. 
  33. Silk, Joseph (1980). The Big Bang (1989 ed.). San Francisco: Freeman. chapter ix, page 182. ISBN 0716710854. 
  34. Umemura, Masayuki; Satoru Ikeuchi (1985). "Formation of Subgalactic Objects within Two-Component Dark Matter". Astrophysical Journal 299: 583–592. doi:10.1086/163726. 
  35. Vittorio, N.; J. Silk (1984). "Fine-scale anisotropy of the cosmic microwave background in a universe dominated by cold dark matter". Astrophysical Journal, Part 2 – Letters to the Editor 285: L39–L43. doi:10.1086/184361. 
  36. Davis, M.; Efstathiou, G., Frenk, C. S., & White, S. D. M. (May 15, 1985). "The evolution of large-scale structure in a universe dominated by cold dark matter". Astrophysical Journal 292: 371–394. doi:10.1086/163168. 
  37. Goddard Space Flight Center (May 14, 2004). "Dark Matter may be Black Hole Pinpoints". NASA's Imagine the Universe. Retrieved on 2008-09-13.
  38. 38.0 38.1 Bertone, G. (2005). "Dark matter dynamics and indirect detection". Modern Physics Letters A 20: 1021–1036. doi:10.1142/S0217732305017391. arΧiv:astro-ph/0504422. 
  39. Kane, G. and Watson, S. (2008). "Dark Matter and LHC:. what is the Connection?". Modern Physics Letters A 23: 2103–2123. doi:10.1142/S0217732308028314. 
  40. Kane, G.; Watson, Scott (2008). "Dark Matter and LHC: What is the Connection?". Modern Physics Letters A 23: 2103–2123. doi:10.1142/S0217732308028314. arΧiv:0807.2244. 
  41. R. Bernabei et al. (2008). "First results from DAMA/LIBRA and the combined results with DAMA/NaI". Eur. Phys. J. C 56: 333–355. doi:10.1140/epjc/s10052-008-0662-y, 
  42. The CDMS Collaboration, Z. Ahmed, et al (2009). "Results from the Final Exposure of the CDMS II Experiment". arΧiv:0912.3592. 
  43. Stecker, F.W.; Hunter, S; Kniffen, D (2008). "The likely cause of the EGRET GeV anomaly and its implications". Astroparticle Physics 29: 25–29. doi:10.1016/j.astropartphys.2007.11.002. arΧiv:0705.4311. 
  44. Atwood, W.B.; Abdo, A. A.; Ackermann, M.; Althouse, W.; Anderson, B.; Axelsson, M.; Baldini, L.; Ballet, J.; et al. (2009). "The large area telescope on the Fermi Gamma-ray Space Telescope Mission". Astrophysical Journal 697: 1071–1102. doi:10.1088/0004-637X/697/2/1071. arΧiv:0902.1089. 
  45. Adriani, O.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Boezio, M.; Bogomolov, E. A.; Bonechi, L.; Bongi, M.; et al. (2009). "An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV". Nature 458: 607–609. doi:10.1038/nature07942. 
  46. Brownstein, J.R.; Moffat, J. W. (2007). "The Bullet Cluster 1E0657-558 evidence shows modified gravity in the absence of dark matter". Monthly Notices of the Royal Astronomical Society 382: 29–47. doi:10.1111/j.1365-2966.2007.12275.x. arΧiv:astro-ph/0702146. 
  47. Reuter, M.; Weyer, H. (2004). "Running Newton Constant, Improved Gravitational Actions, and Galaxy Rotation Curves". Physical Review D 70: 124028. doi:10.1103/PhysRevD.70.124028. arΧiv:hep-th/0410117. 
  48. Th. M. Nieuwenhuizen (2009). "Do non-relativistic neutrinos constitute the dark matter?". Europhysics Letters 86: 57001. doi:10.1209/0295-5075/86/59001. 

Further readingEdit

External linksEdit

ast:Materia escuro zh-min-nan:Àm-o͘ bu̍t-chit bg:Тъмна материя ca:Matèria fosca cs:Temná hmota da:Mørkt stofel:Σκοτεινή ύληeo:Malluma materio eu:Materia ilun fa:ماده تاریکfy:Tsjustere matearje ga:Damhna dorcha gl:Materia escura hi:आन्ध्र पदार्थhr:Tamna tvar io:Sombra materio id:Materi gelap is:Hulduefni it:Materia oscura he:חומר אפל la:Materia nigra lt:Tamsioji medžiaga hu:Sötét anyag ml:തമോദ്രവ്യം ms:Jirim gelap nl:Donkere materieno:Mørk materie nn:Mørk materie pa:ਹਨੇਰ ਪਦਾੱਰਥ pnb:تاریک مادہ pl:Ciemna materia pt:Matéria escura ro:Materia întunecatăscn:Materia nìvira simple:Dark matter sk:Tmavá hmota sl:Temna snov sr:Тамна материја fi:Pimeä aine sv:Mörk materia th:สสารมืด tr:Karanlık madde uk:Темна матерія ur:تاریک مادہ vi:Vật chất tối