Template:Infobox nitrogen

Nitrogen (pronounced /ˈnaɪtrədʒɨn/) is a chemical element that has the symbol N and atomic number 7 and atomic mass 14.00674µ. Elemental nitrogen is a colorless, odorless, tasteless and mostly inert diatomic gas at standard conditions, constituting 78% by volume of Earth's atmosphere.

Many industrially important compounds, such as ammonia, nitric acid, organic nitrates (propellants and explosives), and cyanides, contain nitrogen. The extremely strong bond in elemental nitrogen dominates nitrogen chemistry, causing difficulty for both organisms and industry in converting the N2 into useful compounds, and releasing large amounts of energy when these compounds burn or decay back into nitrogen gas.

The element nitrogen was discovered by Daniel Rutherford, a Scottish physician, in 1772. Nitrogen occurs in all living organisms. It is a constituent element of amino acids and thus of proteins, and of nucleic acids (DNA and RNA). It resides in the chemical structure of almost all neurotransmitters, and is a defining component of alkaloids, biological molecules produced by many organisms.

History Edit

Nitrogen (Latin nitrogenium, where nitrum (from Greek nitron) means "saltpetre" (see nitre), and genes means "forming") is formally considered to have been discovered by Daniel Rutherford in 1772, who called it noxious air or fixed air. That there was a fraction of air that did not support combustion was well known to the late 18th century chemist. Nitrogen was also studied at about the same time by Carl Wilhelm Scheele, Henry Cavendish, and Joseph Priestley, who referred to it as burnt air or phlogisticated air. Nitrogen gas was inert enough that Antoine Lavoisier referred to it as "mephetic air" or azote, from the Greek word άζωτος (azotos) meaning "lifeless". Animals died in it, and it was the principal component of air in which animals had suffocated and flames had burned to extinction. Lavoisier's name for nitrogen is used in French and still remains in English in the common names of many compounds, such as hydrazine and compounds of the azide ion. Compounds of nitrogen were known in the Middle Ages. The alchemists knew nitric acid as aqua fortis (strong water). The mixture of nitric and hydrochloric acids was known as aqua regia (royal water), celebrated for its ability to dissolve gold (the king of metals). The earliest military, industrial and agricultural applications of nitrogen compounds involved uses of saltpeter (sodium nitrate or potassium nitrate), notably in gunpowder, and much later, as fertilizer.

Properties Edit

Nitrogen is a nonmetal, with an electronegativity of 3.04. It has five electrons in its outer shell and is therefore trivalent in most compounds. The triple bond in molecular nitrogen (N2) is the strongest in nature. The resulting difficulty of converting (N2) into other compounds, and the ease (and associated high energy release) of converting nitrogen compounds into elemental N2, have dominated the role of nitrogen in both nature and human economic activities.

At atmospheric pressure molecular nitrogen condenses (liquifies) at 77 K (−195.8 °C) and freezes at 63 K (−210.0 °C) into the beta hexagonal close-packed crystal allotropic form. Below 35.4 K (−237.6 °C) nitrogen assumes the alpha cubic crystal allotropic form. Liquid nitrogen, a fluid resembling water, but with 80.8% of the density (the density of liquid nitrogen at its boiling point is 0.808 g/mL), is a common cryogen.

Unstable allotropes of nitrogen consisting of more than two nitrogen atoms have been produced in the laboratory, like N3 and N4.[1] Under extremely high pressures (1.1 million atm) and high temperatures (2000 K), as produced under diamond anvil conditions, nitrogen polymerizes into the single bonded diamond crystal structure, an allotrope nicknamed "nitrogen diamond."[2]

Isotopes Edit

There are two stable isotopes of nitrogen: 14N and 15N. By far the most common is 14N (99.634%), which is produced in the CNO cycle in stars. Of the ten isotopes produced synthetically, 13N has a half life of ten minutes and the remaining isotopes have half lives on the order of seconds or less. Biologically-mediated reactions (e.g., assimilation, nitrification, and denitrification) strongly control nitrogen dynamics in the soil. These reactions typically result in 15N enrichment of the substrate and depletion of the product.

0.73% of the molecular nitrogen in Earth's atmosphere is comprised of the isotopologue 14N15N and almost all the rest is 14N2.

Radioisotope 16N is the dominant radionuclide in the coolant of pressurized water reactors during normal operation. It is produced from 16O (in water) via (n,p) reaction. It has a short half-life of about 7.1 s, but during its decay back to 16O produces high-energy gamma radiation (5 to 7 MeV). Because of this, the access to the primary coolant piping must be restricted during reactor power operation[3]. 16N is one of the main means used to immediately detect even small leaks from the primary coolant to the secondary steam cycle.

Electromagnetic spectrum Edit

Molecular nitrogen (14N2) is largely transparent to infrared and visible radiation because it is a homonuclear molecule and thus has no dipole moment to couple to electromagnetic radiation at these wavelengths. Significant absorption occurs at extreme ultraviolet wavelengths, beginning around 100 nanometers. This is associated with electronic transitions in the molecule to states in which charge is not distributed evenly between nitrogen atoms. Nitrogen absorption leads to significant absorption of ultraviolet radiation in the Earth's upper atmosphere as well as in the atmospheres of other planetary bodies. For similar reasons, pure molecular nitrogen lasers typically emit light in the ultraviolet range.

Nitrogen also makes a contribution to visible air glow from the Earth's upper atmosphere, through electron impact excitation followed by emission. This visible blue air glow (seen in the polar aurora and in the re-entry glow of returning spacecraft) typically results not from molecular nitrogen, but rather from free nitrogen atoms combining with oxygen to form nitric oxide (NO).

Reactions Edit


Nitrogen is generally unreactive at standard temperature and pressure. N2 reacts spontaneously with few reagents, being resilient to acids and bases as well as oxidants and most reductants. When nitrogen reacts spontaneously with a reagent, the net transformation is often called nitrogen fixation.

Nitrogen reacts with elemental lithium at STP.[4] Lithium burns in an atmosphere of N2 to give lithium nitride:

6 Li + N2 → 2 Li3N

Magnesium also burns in nitrogen, forming magnesium nitride.

3 Mg + N2 → Mg3N2

N2 forms a variety of adducts with transition metals. The first example of a dinitrogen complex is [Ru(NH3)5(N2)]2+ (see figure at right). Such compounds are now numerous, other examples include IrCl(N2)(PPh3)2, W(N2)2(Ph2CH2CH2PPh2)2, and [(η5-C5Me4H)2Zr]2(μ2,η²,η²-N2). These complexes illustrate how N2 might bind to the metal(s) in nitrogenase and the catalyst for the Haber-Bosch Process.[5] A catalytic process to reduce N2 to ammonia with the use of a molybdenum complex in the presence of a proton source was published in 2005.[4] (see nitrogen fixation)

The starting point for industrial production of nitrogen compounds is the Haber-Bosch process, in which nitrogen is fixed by reacting N2 and H2 over a ferric oxide (Fe3O4) catalyst at about 500 °C and 200 atmospheres pressure. Biological nitrogen fixation in free-living cyanobacteria and in the root nodules of plants also produces ammonia from molecular nitrogen. The reaction, which is the source of the bulk of nitrogen in the biosphere, is catalysed by the nitrogenase enzyme complex which contains Fe and Mo atoms, using energy derived from hydrolysis of adenosine triphosphate (ATP) into adenosine diphosphate and inorganic phosphate (−20.5 kJ/mol).

Occurrence Edit

Nitrogen is the largest single constituent of the Earth's atmosphere (78.082% by volume of dry air, 75.3% by weight in dry air). It is created by fusion processes in stars, and is estimated to be the 7th most abundant chemical element by mass in the universe.[6]<! The abundance of Neon is very similar and some books quote Neon as 7th and nitrogen 8th.->

Molecular nitrogen and nitrogen compounds have been detected in interstellar space by astronomers using the Far Ultraviolet Spectroscopic Explorer.[7] Molecular nitrogen is a major constituent of the Saturnian moon Titan's thick atmosphere, and occurs in trace amounts in other planetary atmospheres.[8]

Nitrogen is present in all living organisms, in proteins, nucleic acids and other molecules. It typically makes up around 4% of the dry weight of plant matter, and around 3% of the weight of the human body. It is a large component of animal waste (for example, guano), usually in the form of urea, uric acid, ammonium compounds and derivatives of these nitrogenous products, which are essential nutrients for all plants that are unable to fix atmospheric nitrogen.

Nitrogen occurs naturally in a number of minerals, such as saltpetre (potassium nitrate), Chile saltpetre (sodium nitrate) and sal ammoniac (ammonium chloride). Most of these are relatively uncommon, partly because of the minerals' ready solubility in water. See also Nitrate minerals and Ammonium minerals.

Compounds Edit

The main neutral hydride of nitrogen is ammonia (NH3), although hydrazine (N2H4) is also commonly used. Ammonia is more basic than water by 6 orders of magnitude. In solution ammonia forms the ammonium ion (NH4+). Liquid ammonia (b.p. 240 K) is amphiprotic (displaying either Brønsted-Lowry acidic or basic character) and forms ammonium and the less common amide ions (NH2-); both amides and nitride (N3-) salts are known, but decompose in water. Singly, doubly, triply and quadruply substituted alkyl compounds of ammonia are called amines (four substitutions, to form commercially and biologically important quaternary amines, results in a positively charged nitrogen, and thus a water-soluble, or at least amphiphilic, compound). Larger chains, rings and structures of nitrogen hydrides are also known, but are generally unstable. N22+ is another polyatomic cation as in hydrazine.

Other classes of nitrogen anions (negatively charged ions) are the poisonous azides (N3-), which are linear and isoelectronic to carbon dioxide, but which bind to important iron-containing enzymes in the body in a manner more resembling cyanide. Another molecule of the same structure is the colorless and relatively inert anesthetic gas Nitrous oxide (dinitrogen monoxide, N2O), also known as laughing gas. This is one of a variety of nitrogen oxides that form a family often abbreviated as NOx. Nitric oxide (nitrogen monoxide, NO), is a natural free radical used in signal transduction in both plants and animals, for example in vasodilation by causing the smooth muscle of blood vessels to relax. The reddish and poisonous nitrogen dioxide NO2 contains an unpaired electron and is an important component of smog. Nitrogen molecules containing unpaired electrons show an understandable tendency to dimerize (thus pairing the electrons), and are generally highly reactive. The corresponding acids are nitrous HNO2 and nitric acid HNO3, with the corresponding salts called nitrites and nitrates.

The higher oxides dinitrogen trioxide N2O3, dinitrogen tetroxide N2O4 (DTO) and dinitrogen pentoxide N2O5, are fairly unstable and explosive, a consequence of the chemical stability of N2. DTO is one of the most important oxidisers of rocket fuels, used to oxidise hydrazine in the Titan rocket and in the recent NASA MESSENGER probe to Mercury. DTO is an intermediate in the manufacture of nitric acid HNO3, one of the few acids stronger than hydronium and a fairly strong oxidizing agent.

Nitrogen is notable for the range of explosively unstable compounds that it can produce. Nitrogen triiodide NI3 is an extremely sensitive contact explosive. Nitrocellulose, produced by nitration of cellulose with nitric acid, is also known as guncotton. Nitroglycerin, made by nitration of glycerin, is the dangerously unstable explosive ingredient of dynamite. The comparatively stable, but more powerful explosive trinitrotoluene (TNT) is the standard explosive against which the power of nuclear explosions are measured.

Nitrogen can also be found in organic compounds. Common nitrogen functional groups include: amines, amides, nitro groups, imines, and enamines. The amount of nitrogen in a chemical substance can be determined by the Kjeldahl method.

Applications Edit


Nitrogen gas is an industrial gas produced by the fractional distillation of liquid air, or by mechanical means using gaseous air (i.e. pressurised reverse osmosis membrane or Pressure swing adsorption). Commercial nitrogen is often a byproduct of air-processing for industrial concentration of oxygen for steelmaking and other purposes. When supplied compressed in cylinders it is often referred to as OFN (oxygen-free nitrogen).[9]

Nitrogen gas has a wide variety of applications, including serving as an inert replacement for air where oxidation is undesirable;

See also: Error: Template must be given at least one article name

Nitrogen molecules are less likely to escape from the inside of a tire compared with the traditional air mixture used.

See also: Error: Template must be given at least one article name Air consists mostly of nitrogen and oxygen. Nitrogen molecules have a larger effective diameter than oxygen molecules and therefore diffuse through porous substances more slowly.[14]

Nitrogen is commonly used during sample preparation procedures for chemical analysis. Specifically, it is used as a means of concentrating and reducing the volume of liquid samples. Directing a pressurized stream of nitrogen gas perpendicular to the surface of the liquid allows the solvent to evaporate while leaving the solute(s) and un-evaporated solvent behind.[15]

Nitrogen tanks are also replacing carbon dioxide as the main power source for paintball guns. The downside is that nitrogen must be kept at higher pressure than CO2, making N2 tanks heavier and more expensive.

Nitrogenated beer Edit

A further example of its versatility is its use as a preferred alternative to carbon dioxide to pressurize kegs of some beers, particularly stouts and British ales, due to the smaller bubbles it produces, which make the dispensed beer smoother and headier. A modern application of a pressure sensitive nitrogen capsule known commonly as a "widget" now allows nitrogen charged beers to be packaged in cans and bottles.[16]

Liquid nitrogen Edit

Main article: Liquid nitrogen

Liquid nitrogen is a cryogenic liquid. At atmospheric pressure, it boils at −195.8 °C. When insulated in proper containers such as dewar flasks, it can be transported without much evaporative loss.

See also: Error: Template must be given at least one article name

Like dry ice, the main use of liquid nitrogen is as a refrigerant.

See also: Error: Template must be given at least one article name Among other things, it is used in the cryopreservation of blood, reproductive cells (sperm and egg), and other biological samples and materials. It is used in cold traps for certain laboratory equipment and to cool x-ray detectors.
See also: Error: Template must be given at least one article name It has also been used to cool central processing units and other devices in computers which are overclocked, and which produce more heat than during normal operation.
See also: Error: Template must be given at least one article name

Applications of nitrogen compounds Edit

Molecular nitrogen (N2) in the atmosphere is relatively non-reactive due to its strong bond, and N2 plays an inert role in the human body, being neither produced or destroyed. In nature, nitrogen is converted into biologically (and industrially) useful compounds by lightning, and by some living organisms, notably certain bacteria (i.e. nitrogen fixing bacteria – see Biological role below). Molecular nitrogen is released into the atmosphere in the process of decay, in dead plant and animal tissues.

The ability to combine or fix molecular nitrogen is a key feature of modern industrial chemistry, where nitrogen and natural gas are converted into ammonia via the Shimon Haber process. Ammonia, in turn, can be used directly (primarily as a fertilizer, and in the synthesis of nitrated fertilizers), or as a precursor of many other important materials including explosives, largely via the production of nitric acid by the Ostwald process.

The organic and inorganic salts of nitric acid have been important historically as convenient stores of chemical energy. They include important compounds such as potassium nitrate (or saltpeter used in gunpowder) and ammonium nitrate, an important fertilizer and explosive (see ANFO). Various other nitrated organic compounds, such as nitroglycerin and trinitrotoluene, and nitrocellulose, are used as explosives and propellants for modern firearms. Nitric acid is used as an oxidizing agent in liquid fueled rockets. Hydrazine and hydrazine derivatives find use as rocket fuels and monopropellants. In most of these compounds, the basic instability and tendency to burn or explode is derived from the fact that nitrogen is present as an oxide, and not as the far more stable nitrogen molecule (N2) which is a product of the compounds' thermal decomposition. When nitrates burn or explode, the formation of the powerful triple bond in the N2 which results, produces most of the energy of the reaction.

Nitrogen is a constituent of molecules in every major drug class in pharmacology and medicine. Nitrous oxide (N2O) was discovered early in the 19th century to be a partial anesthetic, though it was not used as a surgical anesthetic until later. Called "laughing gas", it was found capable of inducing a state of social disinhibition resembling drunkenness. Other notable nitrogen-containing drugs are drugs derived from plant alkaloids, such as morphine (there exist many alkaloids known to have pharmacological effects; in some cases they appear natural chemical defences of plants against predation). Nitrogen containing drugs include all of the major classes of antibiotics, and organic nitrate drugs like nitroglycerin and nitroprusside which regulate blood pressure and heart action by mimicking the action of nitric oxide.

Biological role Edit

Nitrogen is an essential building block of both amino acids and nucleic acids, essential to life on Earth.

Elemental nitrogen in the atmosphere cannot be used directly by either plants or animals, and must converted to a reduced (or 'fixed') state in order to be useful for higher plants and animals. Precipitation often contains substantial quantities of ammonium and nitrate, thoughtTemplate:Who to result from nitrogen fixation by lightning and other atmospheric electric phenomena. However, because ammonium is preferentially retained by the forest canopy relative to atmospheric nitrate, most fixed nitrogen that reaches the soil surface under trees as nitrate. Soil nitrate is preferentially assimilated by these tree roots relative to soil ammonium

See also: Error: Template must be given at least one article name.

Specific bacteria (e.g. Rhizobium trifolium) possess nitrogenase enzymes which can fix atmospheric nitrogen (see nitrogen fixation) into a form (ammonium ion) that is chemically useful to higher organisms. This process requires a large amount of energy and anoxic conditions

See also: Error: Template must be given at least one article name. Such bacteria may live freely in soil (e.g. Azotobacter) but normally exist in a symbiotic relationship
See also: Error: Template must be given at least one article name in the root nodules of leguminous plants (e.g. clover, Trifolium, or soybean plant, Glycine max). Nitrogen-fixing bacteria are also symbiotic with a number of unrelated plant species such as alders (Alnus) spp., lichens (Casuarina), Myrica, liverworts, and Gunnera.

As part of the symbiotic relationship, the plant converts the 'fixed' ammonium ion to nitrogen oxides and amino acids to form proteins and other molecules, (e.g. alkaloids)

See also: Error: Template must be given at least one article name. In return for the 'fixed' nitrogen, the plant secretes sugars to the symbiotic bacteria
See also: Error: Template must be given at least one article name.

Some plantsTemplate:Which? are able to assimilate nitrogen directly in the form of nitrates which may be present in soil from natural mineral deposits, artificial fertilizers, animal waste, or organic decay (as the product of bacteria, but not bacteria specifically associated with the plant). Nitrates absorbed in this fashion are converted to nitrites by the enzyme nitrate reductase, and then converted to ammonia by another enzyme called nitrite reductase.

Nitrogen compounds are basic building blocks in animal biology as well. Animals use nitrogen-containing amino acids from plant sources, as starting materials for all nitrogen-compound animal biochemistry, including the manufacture of proteins and nucleic acids. Plant-feeding insects are dependent on nitrogen in their diet, such that varying the amount of nitrogen fertilizer applied to a plant can affect the reproduction rate of insects feeding on fertilized plants.[17]

Soluble nitrate is an important limiting factor in the growth of certain bacteria in ocean waters

See also: Error: Template must be given at least one article name. In many places in the world, artificial fertilizers applied to crop-lands to increase yields result in run-off delivery of soluble nitrogen to oceans at river mouths
See also: Error: Template must be given at least one article name. This process can result in eutrophication of the water, as nitrogen-driven bacterial growth depletes water oxygen to the point that all higher organisms die. Well-known "dead zone" areas in the U.S. Gulf Coast and the Black Sea are due to this important polluting process
See also: Error: Template must be given at least one article name.

Many saltwater fish manufacture large amounts of trimethylamine oxide to protect them from the high osmotic effects of their environment (conversion of this compound to dimethylamine is responsible for the early odor in not fresh saltwater fish [18]. In animals, free radical nitric oxide (NO) (derived from an amino acid), serves as an important regulatory molecule for circulation

See also: Error: Template must be given at least one article name.

Animal metabolism of NO results in production of nitrite

See also: Error: Template must be given at least one article name. Animal metabolism of nitrogen in proteins generally results in excretion of urea, while animal metabolism of nucleic acids results in excretion of urea and uric acid
See also: Error: Template must be given at least one article name. The characteristic odor of animal flesh decay is caused by the creation of long-chain, nitrogen-containing amines, such as putrescine and cadaverine
See also: Error: Template must be given at least one article name.

Decay of organisms and their waste products may produce small amounts of nitrate

See also: Error: Template must be given at least one article name, but most decay eventually returns nitrogen content to the atmosphere
See also: Error: Template must be given at least one article name, as molecular nitrogen . The circulation of nitrogen from atmosphere to organic compounds and back is referred to as the nitrogen cycle.

Safety Edit

Rapid release of nitrogen gas into an enclosed space can displace oxygen, and therefore represents an asphyxiation hazard. This may happen with few warning symptoms, since the human carotid body is a relatively slow and a poor low-oxygen (hypoxia) sensing system.[19] An example occurred shortly before the launch of the first Space Shuttle mission in 1981, when two technicians lost consciousness and died after they walked into a space located in the Shuttle's Mobile Launcher Platform that was pressurized with pure nitrogen as a precaution against fire. The technicians would have been able to exit the room if they had experienced early symptoms from nitrogen-breathing.

When inhaled at high partial pressures (more than about 4 bar, encountered at depths below about 30 m in scuba diving) nitrogen begins to act as an anesthetic agent. It can cause nitrogen narcosis, a temporary semi-anesthetized state of mental impairment similar to that caused by nitrous oxide.[20][21]

Nitrogen also dissolves in the bloodstream and body fats. Rapid decompression (particularly in the case of divers ascending too quickly, or astronauts decompressing too quickly from cabin pressure to spacesuit pressure) can lead to a potentially fatal condition called decompression sickness (formerly known as caisson sickness or more commonly, the "bends"), when nitrogen bubbles form in the bloodstream, nerves, joints, and other sensitive or vital areas.[22][23] Other "inert" gases (those gases other than carbon dioxide and oxygen) cause the same effects from bubbles composed of them, so replacement of nitrogen in breathing gases may prevent nitrogen narcosis, but does not prevent decompression sickness.[24]

Direct skin contact with liquid nitrogen will eventually cause severe frostbite (cryogenic burns). This may happen almost instantly on contact, depending on the form of liquid nitrogen. Bulk liquid nitrogen causes less rapid freezing than a spray of nitrogen mist (such as is used to freeze certain skin growths in the practice of dermatology). The extra surface area provided by nitrogen-soaked materials is also important, with soaked clothing or cotton causing far more rapid damage than a spill of direct liquid to skin. Full "contact" between naked skin and large droplets or pools of undisturbed liquid nitrogen may be prevented for a few seconds by a layer of insulating gas from the Leidenfrost effect. However, liquid nitrogen applied to skin in mists, and on fabrics, bypasses this effect.

See also Edit

References Edit

  1. "A new molecule and a new signature - Chemistry - tetranitrogen". Science News (February 16, 2002). Retrieved on 2007-08-18.
  2. "Polymeric nitrogen synthesized". (August 5, 2004). Retrieved on 2007-08-18.
  3. Karl Heinz Neeb, "The Radiochemistry of Nuclear Power Plants with Light Water Reactors", Walter de Gruyter, Berlin-New York, 1997.
  4. 4.0 4.1 Richard R. Schrock (2005). "Catalytic Reduction of Dinitrogen to Ammonia at a Single Molybdenum Center". Acc. Chem. Res. 38: 955–962. doi:10.1021/ar0501121. 
  5. Fryzuk, M. D. and Johnson, S. A. (2000). "The continuing story of dinitrogen activation". Coordination Chemistry Reviews 200–202: 379. doi:10.1016/S0010-8545(00)00264-2. 
  6. Croswell, Ken (February 1996). Alchemy of the Heavens, Anchor. ISBN 0-385-47214-5, 
  7. Daved M. Meyer, Jason A. Cardelli, and Ulysses J. Sofia (1997). "Abundance of Interstellar Nitrogen". arXiv. Retrieved on 2007-12-24.
  8. Calvin J. Hamilton. "Titan (Saturn VI)". Retrieved on 2007-12-24.
  9. Reich, Murray; Kapenekas, Harry (1957). "Nitrogen Purfication. Pilot Plant Removal of Oxygen". Industrial & Engineering Chemistry 49: 869. doi:10.1021/ie50569a032. 
  10. ed. by Charlie Harding ... Royal Society Chemistry; Open University. (2002). Elements of the p Block. Cambridge: Royal Society of Chemistry. ISBN 9780854046904, 
  11. "Why don't they use normal air in race car tires?". Howstuffworks. Retrieved on 2006-07-22.
  12. "Diffusion, moisture and tyre expansion". Car Talk. Retrieved on 2006-07-22.
  13. "Is it better to fill your tires with nitrogen instead of air?". The Straight Dope. Retrieved on 2007-02-16.
  14. G. J. Van Amerongen (1946). "The Permeability of Different Rubbers to Gases and Its Relation to Diffusivity and Solubility". Journal of Applied Physics 17 (11): 972–985. doi:10.1063/1.1707667. 
  15. Kemmochi, Y (2002). "Centrifugal concentrator for the substitution of nitrogen blow-down micro-concentration in dioxin/polychlorinated biphenyl sample preparation". Journal of Chromatography A 943: 295. doi:10.1016/S0021-9673(01)01466-2. 
  16. Howstuffworks "How does the widget in a beer can work?"
  17. Jahn, GC, LP Almazan, and J Pacia (2005). "Effect of nitrogen fertilizer on the intrinsic rate of increase of the rusty plum aphid, Hysteroneura setariae (Thomas) (Homoptera: Aphididae) on rice (Oryza sativa L.)". Environmental Entomology 34 (4): 938–943, 
  18. PMID 15186102
  19. "Biology Safety - Cryogenic materials. The risks posed by them". University of Bath. Retrieved on 2007-01-03.
  20. Fowler, B; Ackles, KN; Porlier, G (1985). "Effects of inert gas narcosis on behavior--a critical review.". Undersea Biomed. Res. 12 (4): 369–402. ISSN 0093-5387. OCLC 2068005. PMID 4082343, Retrieved on 21 September 2008. 
  21. W. H. Rogers; G. Moeller (1989). "Effect of brief, repeated hyperbaric exposures on susceptibility to nitrogen narcosis". Undersea Biomed. Res. 16 (3): 227–32. ISSN 0093-5387. OCLC 2068005. PMID 2741255, Retrieved on 21 September 2008. 
  22. Acott, C. (1999). "A brief history of diving and decompression illness.". South Pacific Underwater Medicine Society journal 29 (2). ISSN 0813-1988. OCLC 16986801, Retrieved on 21 September 2008. 
  23. Kindwall, E. P.; A. Baz; E. N. Lightfoot; E. H. Lanphier; A. Seireg. (1975). "Nitrogen elimination in man during decompression.". Undersea Biomed. Res. 2 (4): 285–97. ISSN 0093-5387. OCLC 2068005. PMID 1226586, Retrieved on 21 September 2008. 
  24. US Navy Diving Manual, 6th revision. United States: US Naval Sea Systems Command. 2006, Retrieved on 24 April 2008. 

Further reading Edit

  • Garrett, Reginald H.; Grisham, Charles M. (1999). Biochemistry (2nd ed.). Fort Worth: Saunders College Publ.. ISBN 0030223180. 
  • Greenwood, Norman N.; Earnshaw, Alan (1984). Chemistry of the Elements. Oxford: Pergamon Press. ISBN 0080220576. 
  • "Nitrogen". Los Alamos National Laboratory (2003-10-20).

External links Edit


af:Stikstof ar:نيتروجين an:Nitrochén ast:Nitróxenu az:Azot bn:নাইট্রোজেন zh-min-nan:N (goân-sò͘) be:Азот bs:Dušik bg:Азот ca:Nitrogen cv:Азот cs:Dusík co:Azotu cy:Nitrogen da:Kvælstofet:Lämmastik el:Άζωτοeo:Azoto eu:Nitrogeno fa:نیتروژنfy:Stikstof fur:Azôt ga:Nítrigin gv:Neetragien gl:Nitróxeno gu:નાઇટ્રોજન hak:Thamhaw:Naikokene hy:Ազոտ hi:नाइट्रोजन hsb:Dusyk hr:Dušik io:Nitro id:Nitrogen ia:Nitrogeno is:Nitur it:Azoto he:חנקן jv:Nitrogen kn:ಸಾರಜನಕ pam:Nitrogen ka:აზოტი kk:Азот sw:Nitrojeni ht:Azòt ku:Nîtrojen la:Nitrogenium lv:Slāpeklis lb:Stéckstoff lt:Azotas lij:Asoto li:Stikstof ln:Azoti jbo:trano hu:Nitrogén mk:Азот ml:നൈട്രജന്‍ mt:Ażotu mi:Hauota mr:नायट्रोजन mn:Азот nah:Ehēcatehuiltic nl:Stikstof (element)no:Nitrogen nn:Nitrogen nov:Nitrogene oc:Azòt uz:Azot pa:ਨਾਈਟ੍ਰੋਜਨ nds:Stickstoff pl:Azot pt:Nitrogénio ksh:Stickstoff ro:Azot qu:Qullpachaqstq:Stikstof sq:Azoti scn:Azzotu simple:Nitrogen sk:Dusík sl:Dušik sr:Азот sh:Dušik fi:Typpi sv:Kväve ta:நைட்ரசன் te:నత్రజని th:ไนโตรเจน tg:Азот tr:Azot uk:Азот vi:Nitơ yi:אזאט zh-yue:氮 bat-smg:Azuots