MarsTopoMap-PIA02031 modest

Volcanic plateaus (red) and impact basins (blue) dominate this topographic map of Mars.

Mars rocks

Rock strewn surface imaged by Mars Pathfinder

Main article: Geology of Mars

Based on orbital observations and the examination of the Martian meteorite collection, the surface of Mars appears to be composed primarily of basalt. Some evidence suggests that a portion of the Martian surface is more silica-rich than typical basalt, and may be similar to andesitic rocks on Earth; however, these observations may also be explained by silica glass. Much of the surface is deeply covered by finely grained iron(III) oxide dust.[1][2]

Although Mars has no intrinsic magnetic field, observations show that parts of the planet's crust have been magnetized and that alternating polarity reversals of its dipole field have occurred. This paleomagnetism of magnetically susceptible minerals has properties that are very similar to the alternating bands found on the ocean floors of Earth. One theory, published in 1999 and re-examined in October 2005 (with the help of the Mars Global Surveyor), is that these bands demonstrate plate tectonics on Mars 4 billion years ago, before the planetary dynamo ceased to function and caused the planet's magnetic field to fade away.[3]

Current models of the planet's interior imply a core region about 1,480 kilometres in radius, consisting primarily of iron with about 14–17% sulfur. This iron sulfide core is partially fluid, and has twice the concentration of the lighter elements than exist at Earth's core. The core is surrounded by a silicate mantle that formed many of the tectonic and volcanic features on the planet, but now appears to be inactive. The average thickness of the planet's crust is about 50 km, with a maximum thickness of 125 km.[4] Earth's crust, averaging 40 km, is only a third as thick as Mars’ crust relative to the sizes of the two planets.

The geological history of Mars can be split into many epochs, but the following are the three main ones:

  • Noachian epoch (named after Noachis Terra): Formation of the oldest extant surfaces of Mars, 3.8 billion years ago to 3.5 billion years ago. Noachian age surfaces are scarred by many large impact craters. The Tharsis bulge volcanic upland is thought to have formed during this period, with extensive flooding by liquid water late in the epoch.
  • Hesperian epoch (named after Hesperia Planum): 3.5 billion years ago to 1.8 billion years ago. The Hesperian epoch is marked by the formation of extensive lava plains.
  • Amazonian epoch (named after Amazonis Planitia): 1.8 billion years ago to present. Amazonian regions have few meteorite impact craters but are otherwise quite varied. Olympus Mons formed during this period along with lava flows elsewhere on Mars.

A major geological event occurred on Mars on February 19, 2008, and was caught on camera by the Mars Reconnaissance Orbiter. Images capturing a spectacular avalanche of materials thought to be fine grained ice, dust, and large blocks are shown to have detached from a 700-metre high cliff. Evidence of the avalanche is present in the dust clouds left above the cliff afterwards.[5]

Recent studies support a theory, first proposed in the 1980s, that Mars was struck by a Pluto-sized meteor about four billion years ago. The event, thought to be the cause of the Martian hemispheric dichotomy, created the smooth Borealis basin that covers 40% of the planet.[6][7]

See alsoEdit


  1. Christensen, Philip R.; et al. (2003-06-27). "Morphology and Composition of the Surface of Mars: Mars Odyssey THEMIS Results". Science 300 (5628): 2056–2061. doi:10.1126/science.1080885. PMID 12791998. 
  2. Golombek, Matthew P. (2003-06-27). "The Surface of Mars: Not Just Dust and Rocks". Science 300 (5628): 2043–2044. doi:10.1126/science.1082927. PMID 12829771. 
  3. Goddard Space Flight Center. "New Map Provides More Evidence Mars Once Like Earth". Retrieved on 2006-03-17.
  4. Dave Jacqué (2003-09-26). "APS X-rays reveal secrets of Mars' core" (in English), Argonne National Laboratory. Retrieved on 1 July 2006. 
  5. "Mars avalanche caught on camera". Discovery Channel. Discovery Communications (2008-03-04). Retrieved on 2009-03-04.
  6. "Giant Asteroid Flattened Half of Mars, Studies Suggest". Scientific American. Retrieved on 2008-06-27.
  7. "Huge Meteor Strike Explains Mars’s Shape, Reports Say", New York Times. Retrieved on 27 June 2008.